ИСТОРИЯ

ЗАЙМЕМСЯ
ХИМИЕЙ


Название: Уран (uranium)
Порядковый номер: 92
Группа: iii
Период: 7
Атомная масса: 238,0289
Электроотрицательность: 1,38
Температура плавления: 1132?С
Температура кипения: 3818?С
Плотность (г/см3): 18,9
Характерные степени окисления: +3
Цвет: Серый металлический
Кем открыт: М. Клапрот, Е. Периго
Год открытия: 1789
Страна открытия: Германия
Кристалическая структура:
орторомбическая

Уран (лат. uranium), u, радиоактивный химический элемент iii группы периодической системы Менделеева, относится к семейству актиноидов , атомный номер 92, атомная масса 238,029; металл. Природный У. состоит из смеси трёх изотопов: 238 u – 99,2739% с периодом полураспада t 1 / 2 = 4,51 · 10 9 лет, 235 u – 0,7024% (t 1 / 2 = 7,13 · 10 8 лет) и 234 u – 0,0057% (t 1 / 2 = 2,48 · 10 5 лет). Из 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240 долгоживущий – 233 u (t 1 / 2 = 1,62 · 10 5 лет); он получается при нейтронном облучении тория. 238 u и 235 u являются родоначальниками двух радиоактивных рядов.

Историческая справка. У. открыт в 1789 нем. химиком М. Г. Клапротом и назван им в честь планеты Уран, открытой В. Гершелем в 1781. В металлическом состоянии У. получен в 1841 франц. химиком Э. Пелиго при восстановлении ucl 4 металлическим калием. Первоначально У. приписывали атомную массу 120, и только в 1871 Д. И. Менделеев пришёл к выводу, что эту величину надо удвоить.

Длительное время уран представлял интерес только для узкого круга химиков и находил ограниченное применение для производства красок и стекла. С открытием явления радиоактивности У. в 1896 и радия в 1898 началась промышленная переработка урановых руд с целью извлечения и использования радия в научных исследованиях и медицине. С 1942, после открытия в 1939 явления деления ядер, У. стал основным ядерным топливом.

Распространение в природе. У. – характерный элемент для гранитного слоя и осадочной оболочки земной коры. Среднее содержание У. в земной коре (кларк) 2,5 · 10 -4 % по массе, в кислых изверженных породах 3,5 · 10 -4 %, в глинах и сланцах 3,2 · 10 -4 %, в основных породах 5 · 10 -5 %, в ультраосновных породах мантии 3 · 10 -7 %. У. энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в форме простых и комплексных ионов, особенно в форме карбонатных комплексов. Важную роль в геохимии У. играют окислительно-восстановительные реакции, поскольку соединения У., как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (например, сероводородных).

Известно около 100 минералов У.; промышленное значение имеют 12 из них. В ходе геологической истории содержание У. в земной коре уменьшилось за счёт радиоактивного распада; с этим процессом связано накопление в земной коре атомов РЬ, Не. Радиоактивный распад У. играет важную роль в энергетике земной коры, являясь существенным источником глубинного тепла.

Физические свойства. У. по цвету похож на сталь, легко поддаётся обработке. Имеет три аллотропические модификации – a , b и g с температурами фазовых превращений: a ®b 668,8±0,4°c, b® g 772,2 ± 0,4 °С; a -форма имеет ромбическую решётку a = 2.8538 å, b = 5,8662 å, с = 4,9557 å), b -форма – тетрагональую решётку (при 720 °С а = 10,759 , b = 5,656 å), g -форма – объёмноцентрированную кубическую решётку (при 850°c а = 3,538 å). Плотность У. в a -форме (25°c) 19,05 ± 0,2 г/см 3 , t пл 1132 ± 1°С; t kип 3818 °С; теплопроводность (100–200°c), 28,05 вт/ ( м · К ) [0,067 кал/ ( см · сек · °С)], (200–400 °c) 29,72 вт/ ( м · К ) [0,071 кал/ ( см · сек · °С)]; удельная теплоёмкость (25°c) 27,67 кдж/(кг · К ) [6,612 кал/(г · °С)]; удельное электросопротивление при комнатной температуре около 3 · 10 -7 ом · см, при 600°c 5,5 · 10 -7 ом · см; обладает сверхпроводимостью при 0,68 ± 0,02К; слабый парамагнетик, удельная магнитная восприимчивость при комнатной температуре 1,72 · 10 -6 .

Механические свойства У. зависят от его чистоты, от режимов механической и термической обработки. Среднее значение модуля упругости для литого У. 20,5 · 10 -2 Мн/м 2 [20,9 · 10 -3 кгс/мм 2 ] предел прочности при растяжении при комнатной температуре 372–470 Мн/м 2 [38–48 кгс/мм 2 ] , прочность повышается после закалки из b - и g -фаз; средняя твёрдость по Бринеллю 19,6–21,6 · 10 2 Мн/м 2 [200–220 кгс/мм 2 ] .

Облучение потоком нейтронов (которое имеет место в ядерном реакторе ) изменяет физико-механические свойства У.: развивается ползучесть и повышается хрупкость, наблюдается деформация изделий, что заставляет использовать У. в ядерных реакторах в виде различных урановых сплавов.

У. – радиоактивный элемент . Ядра 235 u и 233 u делятся спонтанно, а также при захвате как медленных (тепловых), так и быстрых нейтронов с эффективным сечением деления 508 · 10 -24 см 2 (508 барн ) и 533 · 10 -24 см 2 (533 барн ) соответственно. Ядра 238 u делятся при захвате только быстрых нейтронов с энергией не менее 1 Мэв; при захвате медленных нейтронов 238 u превращается в 239 pu , ядерные свойства которого близки к 235 u. Критич. масса У. (93,5% 235 u) в водных растворах составляет менее 1 кг, для открытого шара – около 50 кг, для шара с отражателем – 15 – 23 кг; критическая масса 233 u – примерно 1 / 3 критической массы 235 u.

Химические свойства. Конфигурация внешней электронной оболочки атома У. 7 s 2 6 d 1 5 f 3 . У. относится к реакционноспособным металлам, в соединениях проявляет степени окисления + 3, + 4, + 5, + 6, иногда + 2; наиболее устойчивы соединения u (iv) и u (vi). На воздухе медленно окисляется с образованием на поверхности плёнки двуокиси, которая не предохраняет металл от дальнейшего окисления. В порошкообразном состоянии У. пирофорен и горит ярким пламенем. С кислородом образует двуокись uo 2 , трёхокись uo 3 и большое число промежуточных окислов, важнейший из которых u 3 o 8 . Эти промежуточные окислы по свойствам близки к uo 2 и uo 3 . При высоких температурах uo 2 имеет широкую область гомогенности от uo 1,60 до uo 2,27 . С фтором при 500–600°c образует тетрафторидирд (зелёные игольчатые кристаллы, малорастворимые в воде и кислотах) и гексафторид uf 6 (белое кристаллическое вещество, возгоняющееся без плавления при 56,4°c); с серой – ряд соединений, из которых наибольшее значение имеет us (ядерное горючее). При взаимодействии У. с водородом при 220 °С получается гидрид uh 3 ; с азотом при температуре от 450 до 700 °С и атмосферном давлении – нитрид u 4 n 7 , при более высоком давлении азота и той же температуре можно получить un, u 2 n 3 и un 2 ; с углеродом при 750–800°c – монокарбид uc, дикарбид uc 2 , а также u 2 c 3 ; с металлами образует сплавы различных типов. У. медленно реагирует с кипящей водой с образованием uo 2 и h 2 , с водяным паром – в интервале температур 150–250 °С; растворяется в соляной и азотной кислотах, слабо – в концентрированной плавиковой кислоте. Для u (vi) характерно образование иона уранила uo 2 2 + ; соли уранила окрашены в жёлтый цвет и хорошо растворимы в воде и минеральных кислотах; соли u (iv) окрашены в зелёный цвет и менее растворимы; ион уранила чрезвычайно способен к комплексообразованию в водных растворах как с неорганическими, так и с органическими веществами; наиболее важны для технологии карбонатные, сульфатные, фторидные, фосфатные и др. комплексы. Известно большое число уранатов (солей не выделенной в чистом виде урановой кислоты), состав которых меняется в зависимости от условий получения; все уранаты имеют низкую растворимость в воде.

У. и его соединения радиационно и химически токсичны. Предельно допустимая доза (ПДД) при профессиональном облучении 5 бэр в год.

Получение. У. получают из урановых руд, содержащих 0,05–0,5% u. Руды практически не обогащаются, за исключением ограниченного способа радиометрической сортировки, основанной на излучении радия, всегда сопутствующего урану. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом У. в кислый раствор в виде uo 2 so 4 или комплексных анионов [uo 2 (so 4 ) 3 ] 4- , а в содовый раствор – в виде [uo 2 (co 3 ) 3 ] 4- . Для извлечения и концентрирования У. из растворов и пульп, а также для очистки от примесей применяют сорбцию на ионообменных смолах и экстракцию органическими растворителями (трибутилфосфат, алкилфосфорные кислоты, амины). Далее из растворов добавлением щёлочи осаждают уранаты аммония или натрия или гидроокись u (oh) 4 . Для получения соединений высокой степени чистоты технические продукты растворяют в азотной кислоте и подвергают аффинажным операциям очистки, конечными продуктами которых являются uo 3 или u 3 o 8 ; эти окислы при 650–800°c восстанавливаются водородом или диссоциированным аммиаком до uo 2 с последующим переводом его в uf 4 обработкой газообразным фтористым водородом при 500–600°c. uf 4 может быть получен также при осаждении кристаллогидрата uf 4 · nh 2 o плавиковой кислотой из растворов с последующим обезвоживанием продукта при 450°c в токе водорода. В промышленности основным способом получения У. из uf 4 является его кальциетермическое или магниетермическое восстановление с выходом У. в виде слитков массой до 1,5 т. Слитки рафинируются в вакуумных печах.

Очень важным процессом в технологии У. является обогащение его изотопом 235 u выше естественного содержания в рудах или выделение этого изотопа в чистом виде, поскольку именно 235 u – основное ядерное горючее; осуществляется это методами газовой термодиффузии, центробежными и др. методами, основанными на различии масс 235 u и 238 u; в процессах разделения У. используется в виде летучего гексафторида uf 6 . При получении У. высокой степени обогащения или изотопов учитываются их критические массы; наиболее удобный способ в этом случае – восстановление окислов У. кальцием; образующийся при этом шлак cao легко отделяется от У. растворением в кислотах.

Для получения порошкообразного У., двуокиси, карбидов, нитридов и др. тугоплавких соединений применяются методы порошковой металлургии.

Применение. Металлический У. или его соединения используются в основном в качестве ядерного горючего в ядерных реакторах . Природная или малообогащённая смесь изотопов У. применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения – в ядерных силовых установках или в реакторах, работающих на быстрых нейтронах. 235 u является источником ядерной энергии в ядерном оружии . 238 u служит источником вторичного ядерного горючего – плутония.

В. М. Кулифеев.

Уран в организме. В микроколичествах (10 -5 –10 -5 %) обнаруживается в тканях растений, животных и человека. В золе растений (при содержании У. в почве около · 10 -4 ) его концентрация составляет 1,5 · 10 -5 %. В наибольшей степени У. накапливается некоторыми грибами и водорослями (последние активно участвуют в биогенной миграции У. по цепи вода – водные растения – рыба – человек). В организм животных и человека У. поступает с пищей и водой в желудочно-кишечный тракт, с воздухом в дыхательные пути, а также через кожные покровы и слизистые оболочки. Соединения У. всасываются в желудочно-кишечном тракте – около 1% от поступающего количества растворимых соединений и не более 0,1% труднорастворимых; в лёгких всасываются соответственно 50% и 20%. Распределяется У. в организме неравномерно. Основные депо (места отложения и накопления) – селезёнка, почки, скелет, печень и, при вдыхании труднорастворимых соединений, – лёгкие и бронхо-лёгочные лимфатические узлы. В крови У. (в виде карбонатов и комплексов с белками) длительно не циркулирует. Содержание У. в органах и тканях животных и человека не превышает 10 -7 г/г . Так, кровь крупного рогатого скота содержит 1 · 10 -8 г/мл, печень 8 · 10 -8 г/г, мышцы 4 · 10 -8 г/г, селезёнка 9 · 10 -8 г/г . Содержание У. в органах человека составляет: в печени 6 · 10 -9 г/г , в лёгких 6 · 10 -9 –9 · 10 -9 г/г, в селезёнке 4,7 · 10 -9 г/г , в крови 4 · 10 -9 г/мл, в почках 5,3 · 10 -9 (корковый слой) и 1,3 · 10 -9 г/г (мозговой слой), в костях 1 · 10 -9 г/г , в костном мозге 1 · 10 -9 г/г , в волосах 1,3 · 10 -7 г/г . У., содержащийся в костной ткани, обусловливает её постоянное облучение (период полувыведения У. из скелета около 300 сут ) . Наименьшие концентрации У. – в головном мозге и сердце (10 -10 г/г ). Суточное поступление У. с пищей и жидкостями – 1,9 · 10 -6 г, с воздухом – 7 · 10 -9 г . Суточное выведение У. из организма человека составляет: с мочой 0,5 · 10 -7 –5 · 10 -7 , с калом – 1,4 · 10 -6 –1,8 · 10 -6 г, с волосами – 2 · 10 -8 г.

По данным Международной комиссии по радиационной защите, среднее содержание У. в организме человека 9 · 10 -8 г. Эта величина для различных районов может варьировать. Полагают, что У. необходим для нормальной жизнедеятельности животных и растений, однако его физиологические функции не выяснены.

Г. П. Галибин.

Токсическое действие У. обусловлено его химическими свойствами и зависит от растворимости: более токсичны уранил и др. растворимые соединения У. Отравления У. и его соединениями возможны на предприятиях по добыче и переработке уранового сырья и др. промышленных объектах, где он используется в технологическом процессе. При попадании в организм У. действует на все органы и ткани, являясь общеклеточным ядом. Признаки отравления обусловлены преим. поражением почек (появление белка и сахара в моче, последующая олигурия ) , поражаются также печень и желудочно-кишечный тракт. Различают острые и хронические отравления; последние характеризуются постепенным развитием и меньшей выраженностью симптомов. При хронической интоксикации возможны нарушения кроветворения, нервной системы и др. Полагают, что молекулярный механизм действия У. связан с его способностью подавлять активность ферментов.

Профилактика отравлений: непрерывность технологических процессов, использование герметичной аппаратуры, предупреждение загрязнения воздушной среды, очистка сточных вод перед спуском их в водоёмы, мед. контроль за состоянием здоровья рабочих, за соблюдением гигиенических нормативов допустимого содержания У. и его соединений в окружающей среде.

В. Ф. Кириллов.

Лит.: Учение о радиоактивности. История и современность, под ред. Б. М. Кедрова, М., 1973; Петросьянц А. М., От научного поиска к атомной промышленности, М., 1970; Емельянов В. С., Евстюхин А. И., Металлургия ядерного горючего, М., 1964; Сокурский Ю. Н., Стерлин Я. М., Федорченко В. А., Уран и его сплавы, М., 1971; Евсеева Л. С., Перельман А. И., Иванов К. Е., Геохимия урана в зоне гнпергениза, 2 изд., М., 1974; Фармакология и токсикология урановых соединений, [пер. с англ.], т. 2, М., 1951; Гуськова В. Н., Уран. Радиационно-гигиеническая характеристика, М., 1972; Андреева О. С., Гигиена труда при работе с ураном и его соединениями, М., 1960; Новиков Ю. В,, Гигиенические вопросы изучения содержания урана во внешней среде и его влияния на организм, М., 1974.

Скачать реферат на тему: "Актинойды"

Назад



(С) Дистанционный творческий конкурс-проект "Моя Веб-страница", 2005
(С) Хмелев Алексей, 2005
http://www.eidos.ru/project/all/web/index.htm