ИСТОРИЯ

ЗАЙМЕМСЯ
ХИМИЕЙ


Название: Олово (stannum)
Порядковый номер: 50
Группа: iv
Период: 5
Электронное строение: 5s2 5p2
Атомная масса: 118,710
Электроотрицательность: 1,96
Температура плавления: 231,97?С
Температура кипения: 2602?С
Плотность (г/см3): 7,3
Характерные степени окисления: -4 +4
Цвет: Серебристо-белый
Кем открыт: неизвестно
Год открытия: до н.э.
Страна открытия: неизвестно
Кристалическая структура:
тетрагональая

Олово (лат. stannum), sn, химический элемент iv группы периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжёлый, мягкий и пластичный. Элемент состоит из 10 изотопов с массовыми числами 112, 114—120, 122, 124; последний слабо радиоактивен; изотоп 120 sn наиболее распространён (около 33%).

Историческая справка. Сплавы О. с медью — бронзы были известны уже в 4-м тыс. до н. э., а чистый металл во 2-м тыс. до н. э. В древнем мире из О. делали украшения, посуду, утварь. Происхождение названий «stannum» и «олово» точно не установлено.

Распространение в природе. О. — характерный элемент верхней части земной коры, его содержание в литосфере 2,5·10 –4 % по массе, в кислых изверженных породах 3·10 –4 %, а в более глубоких основных 1,5·10 –4 %; ещё меньше О. в мантии. Концентрирование О. связано как с магматическими процессами (известны «оловоносные граниты», пегматиты, обогащённые О.), так и с гидротермальными процессами; из 24 известных минералов О. 23 образовались при высоких температурах и давлениях. Главное промышленное значение имеет касситерит sno 2 , меньшее — станнин cu 2 fesns 4. В биосфере О. мигрирует слабо, в морской воде его лишь 3·10 –7 %; известны водные растения с повышенным содержанием О. Однако общая тенденция геохимии О. в биосфере — рассеяние.

Физические и химические свойства. О. имеет две полиморфные модификации. Кристаллическая решётка обычного b -sn (белого О.) тетрагональная с периодами а = 5,813 å, с =3,176 å; плотность 7,29 г / см 3 . При температурах ниже 13,2 ° С устойчиво a -sn (серое О.) кубической структуры типа алмаза; плотность 5,85 г / см 3 . Переход b ® a сопровождается превращением металла в порошок, t пл 231,9 ° С, t kип 2270 ° С. Температурный коэффициент линейного расширения 23·10 –6 (0—100 ° С); удельная теплоёмкость (0 ° С) 0,225 кдж /( кг ·К), т. е. 0,0536 кал /( г · ° С); теплопроводность (0 ° С) 65,8 вт /( м ·К), т. е. 0,157 кал /( см ·- сек · ° С); удельное электрическое сопротивление (20 ° С) 0,115·10 –6 ом · м , т. е. 11,5·10 –6 ом · см . Предел прочности при растяжении 16,6 Мн / м 2 (1,7 кгс / мм 2 ) ' , относительное удлинение 80—90%; твёрдость по Бринеллю 38,3—41,2 Мн / м 2 (3,9—4,2 кгс / мм 2 ). При изгибании прутков О. слышен характерный хруст от взаимного трения кристаллитов.

В соответствии с конфигурацией внешних электронов атома 5 s 2 5 p 2 О. имеет две степени окисления: +2 и +4; последняя более устойчива; соединения sn (П) — сильные восстановители. Сухим и влажным воздухом при температуре до 100 ° С О. практически не окисляется: его предохраняет тонкая, прочная и плотная плёнка sno 2 . По отношению к холодной и кипящей воде О. устойчиво. Стандартный электродный потенциал О. в кислой среде равен — 0,136 в . Из разбавленных hcl и h 2 so 4 на холоду О. медленно вытесняет водород, образуя соответственно хлорид sncl 2 и сульфат snso 4 . В горячей концентрированной h 2 so 4 при нагревании О. растворяется, образуя sn (so 4 ) 2 и so 2 . Холодная (О ° С) разбавленная азотная кислота действует на О. по реакции:

4sn + 10hno 3 = 4sn (no 3 ) 2 + nh 4 no 3 + 3h 2 o.

При нагревании с концентрированной hno 3 (плотность 1,2—1,42 г / см 3 ) О. окисляется с образованием осадка метаоловянной кислоты h 2 sno 3 , степень гидратации которой переменна:

3sn+ 4hno 3 + n h 2 o = 3h 2 sno 3 · n h 2 o + 4no.

При нагревании О. в концентрированных растворах щелочей выделяется водород и образуется гексагидростаннат:

sn + 2КОН + 4Н 2 О = k 2 [sn (oh) 6 ] + 2h 2 .

Кислород воздуха пассивирует О., оставляя на его поверхности плёнку sno 2 . Химически двуокись sno 2 очень устойчива, а окись sno быстро окисляется, её получают косвенным путём. sno 2 проявляет преимущественно кислотные свойства, sno — основные.

С водородом О. непосредственно не соединяется; гидрид snh 4 образуется при взаимодействии mg 2 sn и соляной кислоты:

mg 2 sn + 4hcl = 2mgcl 2 + snh 4 .

Это бесцветный ядовитый газ, t kип —52 ° С; он очень непрочен, при комнатной температуре разлагается на sn и h 2 в течение нескольких суток, а выше 150 ° С — мгновенно. Образуется также при действии водорода в момент выделения на соли О., например:

sncl 2 + 4hcl + 3mg = 3mgcl 2 + snh 4 .

С галогенами О. даёт соединения состава snx 2 и snx 4 . Первые солеобразны и в растворах дают ионы sn 2+ , вторые (кроме snf 4 ) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием О. с сухим хлором (sn + 2cl 2 = sncl 4 ) получают тетрахлорид sncl 4 ; это бесцветная жидкость, хорошо растворяющая серу, фосфор, йод. Раньше по приведённой реакции удаляли О. с вышедших из строя лужёных изделий. Сейчас способ мало распространён из-за токсичности хлора и высоких потерь О.

Тетрагалогениды snx 4 образуют комплексные соединения с h 2 o, nh 3 , окислами азота, pcl 5 , спиртами, эфирами и многими органическими соединениями. С галогеноводородными кислотами галогениды О. дают комплексные кислоты, устойчивые в растворах, например h 2 sncl 4 и h 2 sncl 6 . При разбавлении водой или нейтрализации растворы простых или комплексных хлоридов гидролизуются, давая белые осадки sn (oh) 2 или h 2 sno 3 · n h 2 o. С серой О. даёт нерастворимые в воде и разбавленных кислотах сульфиды: коричневый sns и золотисто-жёлтый sns 2 .

Получение и применение. Промышленное получение О. целесообразно, если содержание его в россыпях 0,01%, в рудах 0,1%; обычно же десятые и единицы процентов. О. в рудах часто сопутствуют w, zr, cs, rb, редкоземельные элементы, Та, nb и др. ценные металлы. Первичное сырьё обогащают: россыпи — преимущественно гравитацией, руды — также флотогравитацией или флотацией.

Концентраты, содержащие 50—70% О., обжигают для удаления серы, очищают от железа действием hcl. Если же присутствуют примеси вольфрамита (fe, mn) wo 4 и шеелита cawo 4 , концентрат обрабатывают hcl; образовавшуюся wo 3 ·h 2 o извлекают с помощью nh 4 oh. Плавкой концентратов с углём в электрических или пламенных печах получают черновое О. (94—98% sn), содержащее примеси cu, pb, fe, as, sb, bi. При выпуске из печей черновое О. фильтруют при температуре 500—600 ° С через кокс или центрифугируют, отделяя этим основную массу железа. Остаток fe и cu удаляют вмешиванием в жидкий металл элементарной серы; примеси всплывают в виде твёрдых сульфидов, которые снимают с поверхности О. От мышьяка и сурьмы О. рафинируют аналогично — вмешиванием алюминия, от свинца — с помощью sncl 2 . Иногда bi и pb испаряют в вакууме. Электролитическое рафинирование и зонную перекристаллизацию применяют сравнительно редко для получения особо чистого О.

Около 50% всего производимого О. составляет вторичный металл; его получают из отходов белой жести, лома и различных сплавов. До 40% О. идёт на лужение консервной жести, остальное расходуется на производство припоев, подшипниковых и типографских сплавов. Двуокись sno 2 применяется для изготовления жаростойких эмалей и глазурей. Соль — станнит натрия na 2 sno 3 ·3h 2 o используется в протравном крашении тканей. Кристаллический sns 2 («сусальное золото») входит в состав красок, имитирующих позолоту. Станнид ниобия nb 3 sn — один из наиболее используемых сверхпроводящих материалов.

Н. Н. Севрюков.

Токсичность самого О. и большинства его неорганических соединений невелика. Острых отравлений, вызываемых широко используемым в промышленности элементарным О., практически не встречается. Отдельные случаи отравлений, описанные в литературе, по-видимому, вызваны выделением ash 3 при случайном попадании воды на отходы очистки О. от мышьяка. У рабочих оловоплавильных заводов при длительном воздействии пыли окиси О. (т. н. чёрное О., sno) могут развиться пневмокониозы , у рабочих, занятых изготовлением оловянной фольги, иногда отмечаются случаи хронической экземы. Тетрахлорид О. (sncl 4 ·5h 2 o) при концентрации его в воздухе свыше 90 мг / м 3 раздражающе действует на верхние дыхательные пути, вызывая кашель; попадая на кожу, хлорид О. вызывает её изъязвления. Сильный судорожный яд — оловянистый водород (станнометан, snh 4 ), но вероятность образования его в производственных условиях ничтожна. Тяжёлые отравления при употреблении в пищу давно изготовленных консервов могут быть связаны с образованием в консервных банках snh 4 (за счёт действия на полуду банок органических кислот содержимого). Для острых отравлений оловянистым водородом характерны судороги, нарушение равновесия; возможен смертельный исход.

Органические соединения О., особенно ди- и триалкильные, обладают выраженным действием на центральную нервную систему. Признаки отравления триалкильными соединениями: головная боль, рвота, головокружение, судороги, парезы, параличи, зрительные расстройства. Нередко развиваются коматозное состояние, нарушения сердечной деятельности и дыхания со смертельным исходом. Токсичность диалкильных соединений О. несколько ниже, в клинической картине отравлений преобладают симптомы поражения печени и желчевыводящих путей. Профилактика: соблюдение правил гигиены труда.

О. как художественный материал. Отличные литейные свойства, ковкость, податливость резцу, благородный серебристо-белый цвет обусловили применение О. в декоративно-прикладном искусстве. В Древнем Египте из О. выполнялись украшения, напаянные на другие металлы. С конца 13 в. в западно-европейских странах появились сосуды и церковная утварь из О., близкие серебряным, но более мягкие по абрису, с глубоким и округлым штрихом гравировки (надписи, орнаменты). В 16 в. Ф. Брио (Франция) и К. Эндерлайн (Германия) начали отливать парадные чаши, блюда, кубки из О. с рельефными изображениями (гербы, мифологические, жанровые сцены). А. Ш. Буль вводил О. в маркетри при отделке мебели. В России изделия из О. (рамы зеркал, утварь) получили широкое распространение в 17 в.; в 18 в. на севере России расцвета достигло производство медных подносов, чайников, табакерок, отделанных оловянными накладками с эмалями. К началу 19 в. сосуды из О. уступили место фаянсовым и обращение к О. как художественному материалу стало редким. Эстетические достоинства современных декоративных изделий из О. — в чётком выявлении структуры предмета и зеркальной чистоте поверхности, достигаемой литьём без последующей обработки.

Лит.: Севрюков Н. Н., Олово, в кн.: Краткая химическая энциклопедия, т. 3, М., 1963, с. 738—39; Металлургия олова, М., 1964; Некрасов Б. В., Основы общей химии, 3 изд., т. 1, М., 1973, с. 620—43; Рипан p., Четяну И., Неорганическая химия, ч. 1 — Химия металлов, пер. с рум., М., 1971, с. 395—426; Профессиональные болезни, 3 изд., М., 1973; Вредные вещества в промышленности, ч. 2, 6 изд., М,, 1971; tardy, les e tains fran c ais, pt. 1—4, p., 1957—64; mory l., sch o nes zinn, m u nch., 1961; haedeke h., zinn, braunschweig, 1963.

Скачать реферат на тему: "Олово"

Назад



(С) Дистанционный творческий конкурс-проект "Моя Веб-страница", 2005
(С) Хмелев Алексей, 2005
http://www.eidos.ru/project/all/web/index.htm