ИСТОРИЯ

ЗАЙМЕМСЯ
ХИМИЕЙ


Название: Германий (germanium)
Порядковый номер: 32
Группа: iv
Период: 4
Электронное строение: 4s2 4p2
Атомная масса: 72,61
Электроотрицательность: 2,01
Температура плавления: 937,4?С
Температура кипения: 2830?С
Плотность (г/см3): 5,323
Характерные степени окисления: -4 +4
Цвет: Серовато-белый
Кем открыт: Клеманс Винклер
Год открытия: 1886
Страна открытия: Германия
Кристалическая структура:
гранецентрированный куб

Германий (лат. germanium), ge, химический элемент iv группы периодической системы Менделеева; порядковый номер 32, атомная масса 72,59; твёрдое вещество серо-белого цвета с металлическим блеском. Природный Г. представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Г. предсказал в 1871 Д. И. Менделеев и назвал этот неизвестный еще элемент «экасилицием» из-за близости свойств его с кремнием. В 1886 немецкий химик К. Винклер обнаружил в минерале аргиродите новый элемент, который назвал Г. в честь своей страны; Г. оказался вполне тождествен «экасилицию». До 2-й половины 20 в. практическое применение Г. оставалось весьма ограниченным. Промышленное производство Г. возникло в связи с развитием полупроводниковой электроники.

Общее содержание Г. в земной коре 7 . 10 —4 % по массе, т. е. больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Г. встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит cu 2 (cu, fe, ge, zn) 2 (s, as) 4 , аргиродит ag 8 ges 6 , конфильдит ag 8 (sn, ce) s 6 и др. Основная масса Г. рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах. Кроме того, Г. присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.

Физические и химические свойства. Г. кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575 å. Плотность твёрдого Г. 5,327 г/см 3 (25°С); жидкого 5,557 (1000°С); t пл 937,5°С; t kип около 2700°С; коэффициент теплопроводности ~60 вт/ ( м ( К ), или 0,14 кал/ ( см ( сек ( град ) при 25°С. Даже весьма чистый Г. хрупок при обычной температуре, но выше 550°С поддаётся пластической деформации. Твёрдость Г. по минералогической шкале 6—6,5; коэффициент сжимаемости (в интервале давлений 0—120 Гн/м 2 или 0—12000 кгс/мм 2 ) 1,4·10 —7 м 2 /мн (1,4·10 —6 см 2 /кгс ); поверхностное натяжение 0,6 н/м (600 дин/см ). Г. — типичный полупроводник с шириной запрещенной зоны 1,104·10 —19 , или 0,69 эв (25°С); удельное электросопротивление Г. высокой чистоты 0,60 ом ( м (60 ом ( см ) при 25°С; подвижность электронов 3900 и подвижность дырок 1900 см 2 /в . сек (25°С) (при содержании примесей менее 10 —8 %). Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм .

В химических соединениях Г. обычно проявляет валентности 2 и 4, причём более стабильны соединения 4-валентного Г. При комнатной температуре Г. устойчив к действию воздуха, воды, растворам щелочей и разбавленных соляной и серной кислот, но легко растворяется в царской водке и в щелочном растворе перекиси водорода. Азотной кислотой медленно окисляется. При нагревании на воздухе до 500—700°С Г. окисляется до окиси geo и двуокиси geo 2 . Двуокись Г. — белый порошок с t пл 1116°С; растворимость в воде 4,3 г/л (20°С). По химическим свойствам амфотерна, растворяется в щелочах и с трудом в минеральных кислотах. Получается прокаливанием гидратного осадка (geo 2 . n h 2 o), выделяемого при гидролизе тетрахлорида gecl 4 . Сплавлением geo 2 с др. окислами могут быть получены производные германиевой кислоты — германаты металлов (in 2 ceo 3 , na 2 ge О 3 и др.) — твёрдые вещества с высокими температурами плавления.

При взаимодействии Г. с галогенами образуются соответствующие тетрагалогениды. Наиболее легко реакция протекает с фтором и хлором (уже при комнатной температуре), затем с бромом (слабое нагревание) и с иодом (при 700—800°С в присутствии co). Одно из наиболее важных соединений Г. тетрахлорид gecl 4 — бесцветная жидкость; t пл —49,5°С; t kип 83,1°С; плотность 1,84 г/см 3 (20°С). Водой сильно гидролизуется с выделением осадка гидратированной двуокиси. Получается хлорированием металлического Г. или взаимодействием geo 2 с концентрированной НС1. Известны также дигалогениды Г. общей формулы gex 2 , монохлорид gecl, гексахлордигерман ge 2 cl 6 и оксихлориды Г. (например, geocl 2 ).

Сера энергично взаимодействует с Г. при 900—1000°С с образованием дисульфида ges 2 — белого твёрдого вещества, t пл 825°С. Описаны также моносульфид ges и аналогичные соединения Г. с селеном и теллуром, которые являются полупроводниками. Водород незначительно реагирует с Г. при 1000—1100°С с образованием гермина (geh) x — малоустойчивого и легко летучего соединения. Взаимодействием германидов с разбавленной соляной кислотой могут быть получены германоводороды ряда ge n h 2n+2 вплоть до ge 9 h 20 . Известен также гермилен состава geh 2 . С азотом Г. непосредственно не реагирует, однако существует нитрид ge 3 n 4 , получающийся при действии аммиака на Г. при 700—800°С. С углеродом Г. не взаимодействует. Г. образует соединения со многими металлами — германиды.

Известны многочисленные комплексные соединения Г., которые приобретают всё большее значение как в аналитической химии Г., так и в процессах его получения. Г. образует комплексные соединения с органическими гидроксилсодержащими молекулами (многоатомными спиртами, многоосновными кислотами и др.). Получены гетерополикислоты Г. Так же, как и для др. элементов iv группы, для Г. характерно образование металлорганических соединений, примером которых служит тетраэтилгерман (c 2 h 5 ) 4 ge 3 .

Получение и применение. В промышленной практике Г. получают преимущественно из побочных продуктов переработки руд цветных металлов (цинковой обманки, цинково-медно-свинцовых полиметаллических концентратов), содержащих 0,001—0,1% Г. В качестве сырья используют также золы от сжигания угля, пыль газогенераторов и отходы коксохимических заводов. Первоначально из перечисленных источников различными способами, зависящими от состава сырья, получают германиевый концентрат (2—10% Г.). Извлечение Г. из концентрата обычно включает следующие стадии: 1) хлорирование концентрата соляной кислотой, смесью её с хлором в водной среде или др. хлорирующими агентами с получением технического gecl 4 . Для очистки gecl 4 применяют ректификацию и экстракцию примесей концентрированной hcl. 2) Гидролиз gecl 4 и прокаливание продуктов гидролиза до получения geo 2 . 3) Восстановление geo водородом или аммиаком до металла. Для выделения очень чистого Г., используемого в полупроводниковых приборах, проводится зонная плавка металла. Необходимый для полупроводниковой промышленности монокристаллический Г. получают обычно зонной плавкой или методом Чохральского.

Г. — один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Г. применяется также в дозиметрических приборах и приборах, измеряющих напряжённость постоянных и переменных магнитных полей. Важной областью применения Г. является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8—14 мк . Перспективны для практического использования многие сплавы, в состав которых входят Г., стекла на основе geo 2 и др. соединения Г.

Лит.: Тананаев И. В., Шпирт М. Я., Химия германия, М., 1967; Угай Я. А., Введение в химию полупроводников, М., 1965; Давыдов В. И., Германий, М., 1964; Зеликман А. Н., Крейн О. Е., Самсонов Г. В., Металлургия редких металлов, 2 изд., М., 1964; Самсонов Г. В., Бондарев В. Н., Германиды, М., 1968.

Б. А. Поповкин.

cкачать реферат по теме: "Германий".

Назад



(С) Дистанционный творческий конкурс-проект "Моя Веб-страница", 2005
(С) Хмелев Алексей, 2005
http://www.eidos.ru/project/all/web/index.htm