ИСТОРИЯ

ЗАЙМЕМСЯ
ХИМИЕЙ


Название: Медь (cuprum)
Порядковый номер: 29
Группа: i
Период: 4
Электронное строение: 3d10 4s1
Атомная масса: 63,546
Электроотрицательность: 1,9
Температура плавления: 1083?С
Температура кипения: 2567?С
Плотность (г/см3): 8,96
Характерные степени окисления: +1 +2
Цвет: Красно-коричневый
Кем открыт: неизвестно
Год открытия: до н.э.
Страна открытия: неизвестно
Кристалическая структура:
гранецентрированный куб

Медь (лат. cuprum), cu, химический элемент i группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546; мягкий, ковкий металл красного цвета. Природная М. состоит из смеси двух стабильных изотопов — 63 cu (69,1 % ) и 65 cu (30,9 % ).

Историческая справка. М. относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с М. способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. М. и её сплавы сыграли большую роль в развитии материальной культуры. Благодаря лёгкой восстановимости окислов и карбонатов М. была, по-видимому, первым металлом, который человек научился восстановлять из кислородных соединений, содержащихся в рудах. Латинское название М. происходит от названия острова Кипр, где древние греки добывали медную руду. В древности для обработки скальной породы её нагревали на костре и быстро охлаждали, причём порода растрескивалась. Уже в этих условиях были возможны процессы восстановления. В дальнейшем восстановление вели в кострах с большим количеством угля и с вдуванием воздуха посредством труб и мехов. Костры окружали стенками, которые постепенно повышались, что привело к созданию шахтной печи. Позднее методы восстановления уступили место окислительной плавке сульфидных медных руд с получением промежуточных продуктов — штейна (сплава сульфидов), в котором концентрируется М., и шлака (сплава окислов).

Распространение в природе. Среднее содержание М. в земной коре (кларк) 4,7 · 10 -3 % (по массе), в нижней части земной коры, сложенной основными породами, её больше (1 · 10 -2 %), чем в верхней (2 · 10 -3 %), где преобладают граниты и другие кислые изверженные породы. М. энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды М., имеющие большое промышленное значение. Среди многочисленных минералов М. преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная М., карбонаты и окислы.

М. — важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание М. в живом веществе 2 · 10 -4 %, известны организмы — концентраторы М. В таёжных и других ландшафтах влажного климата М. сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит М. и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) М. малоподвижна; на участках месторождений М. наблюдается её избыток в почвах и растениях, отчего болеют домашние животные.

В речной воде очень мало М., 1 · 10 -7 %. Приносимая в океан со стоком М. сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены М. (5,7 · 10 -3 % ), а морская вода резко недосыщена М. (3 · 10 -7 %).

В морях прошлых геологических эпох местами происходило значительное накопление М. в илах, приведшее к образованию месторождений (например, Мансфельд в ГДР). М. энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление руд М. в песчаниках.

Физические и химические свойства. Цвет М. красный, в изломе розовый, при просвечивании в тонких слоях зеленовато-голубой. Металл имеет гранецентрированную кубическую решётку с параметром а = 3,6074 å; плотность 8,96 г/см 3 (20 °С). Атомный радиус 1,28 å; ионные радиусы cu + 0,98 å; cu 2+ 0,80 å; t пл. 1083 °С; t кип. 2600 °С; удельная теплоёмкость (при 20 °С) 385,48 дж /( кг · К ) , то есть 0,092 кал /( г · °С). Наиболее важные и широко используемые свойства М.: высокая теплопроводность — при 20 °С 394,279 вт /( м · К ) , то есть 0,941 кал /( см · сек · °С); малое электрическое сопротивление — при 20 °С 1,68 · 10 -8 ом · м . Термический коэффициент линейного расширения 17,0 · 10 -6 . Давление паров над М. ничтожно, давление 133,322 н/м 2 (то есть 1 мм рт. ст. ) достигается лишь при 1628 °С. М. диамагнитна; атомная магнитная восприимчивость 5,27 · 10 -6 . Твёрдость М. по Бринеллю 350 Мн/м 2 (то есть 35 кгс/мм 2 ); предел прочности при растяжении 220 Мн/м 2 (то есть 22 кгс/мм 2 ); относительное удлинение 60 %, модуль упругости 132 · 10 3 Мн/м 2 (то есть 13,2 · 10 3 кгс/мм 2 ). Путём наклёпа предел прочности может быть повышен до 400—450 Мн/м 2 , при этом удлинение уменьшается до 2 %, а электропроводность уменьшается на 1—3 %. Отжиг наклёпанной М. следует проводить при 600—700 °С. Небольшие примеси bi (тысячные доли % ) и pb (сотые доли % ) делают М. красноломкой, а примесь s вызывает хрупкость на холоде.

По химическим свойствам М. занимает промежуточное положение между элементами первой триады viii группы и щелочными элементами i группы системы Менделеева. М., как и fe, Со, ni, склонна к комплексообразованию, даёт окрашенные соединения, нерастворимые сульфиды и т. д. Сходство с щелочными металлами незначительно. Так, М. образует ряд одновалентных соединений, однако для неё более характерно 2-валентное состояние. Соли одновалентной М. в воде практически нерастворимы и легко окисляются до соединений 2-валентной М.; соли 2-валентной М., напротив, хорошо растворимы в воде и в разбавленных растворах полностью диссоциированы. Гидратированные ионы cu 2+ окрашены в голубой цвет. Известны также соединения, в которых М. 3-валентна. Так, действием перекиси натрия на раствор куприта натрия na 2 cuo 2 получен окисел cu 2 o 3 — красный порошок, начинающий отдавать кислород уже при 100 °С. cu 2 o 3 — сильный окислитель (например, выделяет хлор из соляной кислоты).

Химическая активность М. невелика. Компактный металл при температурах ниже 185 °С с сухим воздухом и кислородом не взаимодействует. В присутствии влаги и co 2 на поверхности М. образуется зелёная плёнка основного карбоната. При нагревании М. на воздухе идёт поверхностное окисление; ниже 375 °С образуется cuo, а в интервале 375—1100 °С при неполном окислении М. — двухслойная окалина, в поверхностном слое которой находится cuo, а во внутреннем — cu 2 o. Влажный хлор взаимодействует с М. уже при обычной температуре, образуя хлорид cucl 2 , хорошо растворимый в воде. М. легко соединяется и с другими галогенами. Особое сродство проявляет М. к сере и селену; так, она горит в парах серы. С водородом, азотом и углеродом М. не реагирует даже при высоких температурах. Растворимость водорода в твёрдой М. незначительна и при 400 °С составляет 0,06 мг в 100 г М. Водород и другие горючие газы (co, ch 4 ), действуя при высокой температуре на слитки М., содержащие cu 2 o, восстановляют её до металла с образованием co 2 и водяного пара. Эти продукты, будучи нерастворимыми в М., выделяются из неё, вызывая появление трещин, что резко ухудшает механические свойства М.

При пропускании nh 3 над раскалённой М. образуется cu 3 n. Уже при температуре каления М. подвергается воздействию окислов азота, а именно no, n 2 o (с образованием cu 2 o) и no 2 (с образованием cuo). Карбиды cu 2 c 2 и cuc 2 могут быть получены действием ацетилена на аммиачные растворы солей М. Нормальный электродный потенциал М. для реакции cu 2+ + 2e ® Сu равен +0,337 в , а для реакции cu2+ + е -> Сu равен +0,52 в . Поэтому М. вытесняется из своих солей более электроотрицательными элементами (в промышленности используется железо) и не растворяется в кислотах-неокислителях. В азотной кислоте М. растворяется с образованием cu(no 3 ) 2 и окислов азота, в горячей концентрации h 2 so 4 — с образованием cuso 4 и so 2 , в нагретой разбавленной h 2 so 4 — при продувании через раствор воздуха. Все соли М. ядовиты.

М. в двух- и одновалентном состоянии образует многочисленные весьма устойчивые комплексные соединения. Примеры комплексных соединений одновалентной М.: (nh 4 ) 2 cubr 3 ; k 3 cu(cn) 4 — комплексы типа двойных солей; [Сu {sc (nh 2 )} 2 ]ci и другие. Примеры комплексных соединений 2-валентной М.: cscuci 3 , k 2 cucl 4 — тип двойных солей. Важное промышленное значение имеют аммиачные комплексные соединения М.: [Сu (nh 3 ) 4 ] so 4 , [Сu (nh 3 ) 2 ] so 4 .

Получение. Медные руды характеризуются невысоким содержанием М. Поэтому перед плавкой тонкоизмельчённую руду подвергают механическому обогащению; при этом ценные минералы отделяются от основной массы пустой породы; в результате получают ряд товарных концентратов (например, медный, цинковый, пиритный) и отвальные хвосты.

В мировой практике 80 % М. извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего сродства М. к сере, а компонентов пустой породы и железа к кислороду, М. концентрируется в сульфидном расплаве (штейне), а окислы образуют шлак. Штейн отделяют от шлака отстаиванием.

На большинстве современных заводов плавку ведут в отражательных или в электрических печах. В отражательных печах рабочее пространство вытянуто в горизонтальном направлении; площадь пода 300 м 2 и более (30 м ? 10 м ), необходимое для плавления тепло получают сжиганием углеродистого топлива (естественный газ, мазут, пылеуголь) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды).

Однако и отражательная, и электрическая плавки, основанные на внешних источниках теплоты, — процессы несовершенные. Сульфиды, составляющие основную массу медных концентратов, обладают высокой теплотворной способностью. Поэтому всё больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель — подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскалённую до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка). Можно окислять сульфиды и в жидком состоянии; эти процессы усиленно исследуются в СССР и за рубежом (Япония, Австралия, Канада) и становятся главным направлением в развитии пирометаллургии сульфидных медных руд.

Богатые кусковые сульфидные руды (2—3 % cu) с высоким содержанием серы (35—42 % s) в ряде случаев непосредственно направляются на плавку в шахтных печах (печи с вертикально расположенным рабочим пространством). В одной из разновидностей шахтной плавки (медно-серная плавка) в шихту добавляют мелкий кокс, восстановляющий в верхних горизонтах печи so 2 до элементарной серы. Медь в этом процессе также концентрируется в штейне.

Получающийся при плавке жидкий штейн (в основном cu 2 s, fes) заливают в конвертер — цилиндрический резервуар из листовой стали, выложенный изнутри магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и устройством для поворачивания вокруг оси. Через слой штейна продувают сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала окисляется сульфид железа, и для связывания окислов железа в конвертер добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид меди с образованием металлической М. и so 2 . Эту черновую М. разливают в формы. Слитки (а иногда непосредственно расплавленную черновую М.) с целью извлечения ценных спутников (au, ag, se, fe, bi и других) и удаления вредных примесей направляют на огневое рафинирование. Оно основано на большем, чем у меди, сродстве металлов-примесей к кислороду: fe, zn, co и частично ni и другие в виде окислов переходят в шлак, а сера (в виде so 2 ) удаляется с газами. После удаления шлака М. для восстановления растворённой в ней cu 2 o «дразнят», погружая в жидкий металл концы сырых берёзовых или сосновых брёвен, после чего отливают его в плоские формы. Для электролитического рафинирования эти слитки подвешивают в ванне с раствором cuso 4 , подкислённым h 2 so 4 . Они служат анодами. При пропускании тока аноды растворяются, а чистая М. отлагается на катодах — тонких медных листах, также получаемых электролизом в специальных матричных ваннах. Для выделения плотных гладких осадков в электролит вводят поверхностно-активные добавки (столярный клей, тиомочевину и другие). Полученную катодную М. промывают водой и переплавляют. Благородные металлы, se, te и другие ценные спутники М. концентрируются в анодном шламе, из которого их извлекают специальной переработкой. Никель концентрируется в электролите; выводя часть растворов на упаривание и кристаллизацию, можно получить ni в виде никелевого купороса.

Наряду с пирометаллургическими применяют также гидрометаллургические методы получения М. (преимущественно из бедных окисленных и самородных руд). Эти методы основаны на избирательном растворении медьсодержащих минералов, обычно в слабых растворах h 2 so 4 или аммиака. Из раствора М. либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами. Весьма перспективны применительно к смешанным рудам комбинированные гидрофлотационные методы, при которых кислородные соединения М. растворяются в сернокислых растворах, а сульфиды выделяются флотацией. Получают распространение и автоклавные гидрометаллургические процессы, идущие при повышенных температурах и давлении.

Применение. Большая роль М. в технике обусловлена рядом её ценных свойств и прежде всего высокой электропроводностью, пластичностью, теплопроводностью. Благодаря этим свойствам М. — основной материал для проводов; свыше 50 % добываемой М. применяют в электротехнической промышленности. Все примеси понижают электропроводность М., а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9 % cu. Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из М. ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30—40 % М. используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50 % zn) и различные виды бронз ; оловянистые, алюминиевые, свинцовистые, бериллиевые и т. д. Кроме нужд тяжёлой промышленности, связи, транспорта, некоторое количество М. (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шёлка.

Л. В. Ванюков.

Медь как художественный материал используется с медного века (украшения, скульптура, утварь, посуда). Кованые и литые изделия из М. и сплавов украшаются чеканкой, гравировкой и тиснением. Лёгкость обработки М. (обусловленная её мягкостью) позволяет мастерам добиваться разнообразия фактур, тщательности проработки деталей, тонкой моделировки формы. Изделия из М. отличаются красотой золотистых или красноватых тонов, а также свойством обретать блеск при шлифовке. М. нередко золотят, патинируют, тонируют, украшают эмалью. С 15 века М. применяется также для изготовления печатных форм.

Медь в организме. М. — необходимый для растений и животных микроэлемент . Основная биохимическая функция М. — участие в ферментативных реакциях в качестве активатора или в составе медьсодержащих ферментов. Количество М. в растениях колеблется от 0,0001 до 0,05 % (на сухое вещество) и зависит от вида растения и содержания М. в почве. В растениях М. входит в состав ферментов-оксидаз и белка пластоцианина. В оптимальных концентрациях М. повышает холодостойкость растений, способствует их росту и развитию. Среди животных наиболее богаты М. некоторые беспозвоночные (у моллюсков и ракообразных в гемоцианине содержится 0,15—0,26 % М.). Поступая с пищей, М. всасывается в кишечнике, связывается с белком сыворотки крови — альбумином, затем поглощается печенью, откуда в составе белка церулоплазмина возвращается в кровь и доставляется к органам и тканям.

Содержание М. у человека колеблется (на 100 г сухой массы) от 5 мг в печени до 0,7 мг в костях, в жидкостях тела — от 100 мкг (на 100 мл ) в крови до 10 мкг в спинномозговой жидкости; всего М. в организме взрослого человека около 100 мг . М. входит в состав ряда ферментов (например, тирозиназы, цитохромоксидазы), стимулирует кроветворную функцию костного мозга. Малые дозы М. влияют на обмен углеводов (снижение содержания сахара в крови), минеральных веществ (уменьшение в крови количества фосфора) и др. Увеличение содержания М. в крови приводит к превращению минеральных соединений железа в органические, стимулирует использование накопленного в печени железа при синтезе гемоглобина .

При недостатке М. злаковые растения поражаются так называемой болезнью обработки, плодовые — экзантемой; у животных уменьшаются всасывание и использование железа, что приводит к анемии , сопровождающейся поносом и истощением. Применяются медные микроудобрения и подкормка животных солями М. Отравление М. приводит к анемии, заболеванию печени, болезни Вильсона. У человека отравление возникает редко благодаря тонким механизмам всасывания и выведения М. Однако в больших дозах М. вызывает рвоту; при всасывании М. может наступить общее отравление (понос, ослабление дыхания и сердечной деятельности, удушье, коматозное состояние).

И. Ф. Грибовская.

В медицине сульфат М. применяют как антисептическое и вяжущее средство в виде глазных капель при конъюнктивитах и глазных карандашей для лечения трахомы. Раствор сульфата М. используют также при ожогах кожи фосфором. Иногда сульфат М. применяют как рвотное средство. Нитрат М. употребляют в виде глазной мази при трахоме и конъюнктивитах.

Лит.: Смирнов В. И., Металлургия меди и никеля, Свердловск — М., 1950; Аветисян Х. К., Металлургия черновой меди, М., 1954; Газарян Л. М., Пирометаллургия меди, М., 1960; Справочник металлурга по цветным металлам, под редакцией Н. Н. Мурача, 2 изд., т. 1, М., 1953, т. 2, М., 1947; Левинсон Н. p., [Изделия из цветного и чёрного металла], в книге: Русское декоративное искусство, т. 1—3, М., 1962—65; hadaway w. s., illustrations of metal work in brass and copper mostly south indian, madras, 1913; wainwright g. a., the occurrence of tin and copper near bybios, «journal of egyptian archaeology», 1934, v. 20, pt 1, p. 29—32; bergs ? e p., the gilding process and the metallurgy of copper and lead among the precolumbian indians, kbh., 1938; Фриден Э., Роль соединений меди в природе, в книге: Горизонты биохимии, перевод с английского, М., 1964; его же. Биохимия меди, в книге: Молекулы и клетки, перевод с английского, в. 4, М., 1969; Биологическая роль меди, М., 1970.

cкачать реферат по теме: "Медь".

Назад



(С) Дистанционный творческий конкурс-проект "Моя Веб-страница", 2005
(С) Хмелев Алексей, 2005
http://www.eidos.ru/project/all/web/index.htm