ИСТОРИЯ

ЗАЙМЕМСЯ
ХИМИЕЙ


Название: Кальций (calcium)
Порядковый номер: 20
Группа: ii
Период: 4
Электронное строение: 4s2
Атомная масса: 40,078
Электроотрицательность: 1
Температура плавления: 839?С
Температура кипения: 1484?С
Плотность (г/см3): 1,55
Характерные степени окисления: +2
Цвет элемента: Серебристо-белый
Кем открыт: Гемфри Дэви
Год открытия: 1808
Страна открытия: Англия
Кристалическая структура:
гранецентрированный куб

Кальций (calcium), ca, химический элемент ii группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый лёгкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40 ca, 42 ca, 43 ca, 44 ca, 46 ca и 48 ca, из которых наиболее распространён 40 ca (96, 97%).

Соединения ca — известняк, мрамор, гипс (а также известь — продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 в. химики считали известь простым телом. В 1789 А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём — вещества сложные. В 1808 Г. Дэви , подвергая электролизу с ртутным катодом смесь влажной гашёной извести с окисью ртути, приготовил амальгаму ca, а отогнав из неё ртуть, получил металл, названный «кальций» (от лат. calx, родительный падеж calcis — известь).

Распространение в природе. По распространённости в земной коре ca занимает 5-е место (после О, si, al и fe); содержание 2,96% по массе. Он энергично мигрирует и накапливается в различных геохимических системах, образуя 385 минералов (4-е место по числу минералов). В мантии Земли ca мало и, вероятно, ещё меньше в земном ядре (в железных метеоритах 0,02%). ca преобладает в нижней части земной коры, накапливаясь в основных породах; большая часть ca заключена в полевом шпате — анортите ca [al 2 si 2 o 8 ]; содержание в основных породах 6,72%, в кислых (граниты и др.) 1,58%. В биосфере происходит исключительно резкая дифференциация ca, связанная главным образом с «карбонатным равновесием»: при взаимодействии углекислого газа с карбонатом caco 3 образуется растворимый бикарбонат Са (НСО 3 ) 2 :

СаСО 3 + h 2 o + co 2 <=> Са (НСО 3 ) 2 <=> ca 2+ + 2hco 3 -.

Эта реакция обратима и является основой перераспределения ca. При высоком содержании co 2 в водах ca находится в растворе, а при низком содержании co 2 в осадок выпадает минерал кальцит СаСОз, образуя мощные залежи известняка, мела, мрамора.

Огромную роль в истории ca играет и биогенная миграция. В живом веществе из элементов — металлов ca — главный. Известны организмы, которые содержат более 10% ca (больше углерода), строящие свой скелет из соединений ca, главным образом из СаСО 3 (известковые водоросли, многие моллюски, иглокожие, кораллы, корненожки и т.д.). С захоронением скелетов морских животных и растений связано накопление колоссальных масс водорослевых, коралловых и прочих известняков, которые, погружаясь в земные глубины и минерализуясь, превращаются в различные виды мрамора.

Огромные территории с влажным климатом (лесные зоны, тундра) характеризуются дефицитом ca — здесь он легко выщелачивается из почв. С этим связано низкое плодородие почв, низкая продуктивность домашних животных, их малые размеры, нередко болезни скелета. Поэтому большое значение имеет известкование почв, подкормка домашних животных и птиц и т.д. Напротив, в сухом климате СаСО 3 трудно растворим, поэтому ландшафты степей и пустынь богаты ca. В солончаках и солёных озёрах часто накапливается гипс caso 4 · 2h 2 o.

Реки приносят в океан много ca, но он не задерживается в океанической воде (ср. содержание 0,04%), а концентрируется в скелетах организмов и после их гибели осаждается на дно преимущественно в форме СаСО 3 . Известковые илы широко распространены на дне всех океанов на глубинах не более 4000 м (на больших глубинах происходит растворение СаСО 3 , организмы там нередко испытывают дефицит ca).

Важную роль в миграции ca играют подземные воды. В известняковых массивах они местами энергично выщелачивают СаСО 3 , с чем связано развитие карста , образование пещер, сталактитов и сталагмитов. Помимо кальцита, в морях прошлых геологических эпох было широко распространено отложение фосфатов ca (например, месторождения фосфоритов Каратау в Казахстане), доломита СаСО 3 · mgco 3 , а в лагунах при испарении —гипса.

В ходе геологической истории росло биогенное карбонатообразование, а химическое осаждение кальцита уменьшалось. В докембрийских морях (свыше 600 млн. лет назад) не было животных с известковым скелетом; они приобрели широкое распространение начиная с кембрия (кораллы, губки и т.д.). Это связывают с высоким содержанием co 2 в атмосфере докембрия.

Физические и химические свойства. Кристаллическая решётка a -формы ca (устойчивой при обычной температуре) гранецентрированная кубическая а = 5,56 å. Атомный радиус 1,97 å, ионный радиус ca 2+ , 1,04 å. Плотность 1,54 г/см 3 (20 °С). Выше 464 °c устойчива гексагональная b -форма. t пл 851°c, t kип 1482 ° c; температурный коэффициент линейного расширения 22 ? 10 -6 (0—300 ° c); теплопроводность при 20 °c 125,6 Вт/(м ? К) или 0,3 кал/ ( см ? сек ° С); удельная теплоёмкость (0—100 °С) 623,9 дж/(кг ? К ) или 0,149 кал/ ( г ? °c); удельное электросопротивление при 20°c 4,6 ? 10 -8 ом ? м или 4,6 ? 10 -6 ом ? см ; температурный коэффициент электросопротивления 4,57 ? 10 -3 (20 °c). Модуль упругости 26 Гн/м 2 (2600 кгс/мм 2 ); предел прочности при растяжении 60 Мн/м 2 (6 кгс/мм 2 ); предел упругости 4 Мн/м 2 (0,4 кгс/мм 2 ), предел текучести 38 Мн/м 2 (3,8 кгс/мм 2 ); относительное удлинение 50%; твердость по Бринеллю 200—300 Мн/м 2 (20—30 кгс/мм 2 ). К. достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием.

Конфигурация внешней электронной оболочки атома ca 4s 2 , в соответствии с чем ca в соединениях 2-валентен. Химически ca очень активен. При обычной температуре ca легко взаимодействует с кислородом и влагой воздуха, поэтому его хранят в герметически закрытых сосудах или под минеральным маслом. При нагревании на воздухе или в кислороде воспламеняется, давая основной окисел cao. Известны также перекиси ca — cao 2 и СаО 4 . С холодной водой ca взаимодействует сначала быстро, затем реакция замедляется вследствие образования пленки ca (oh) 2. ca энергично взаимодействует с горячей водой и кислотами, выделяя h 2 (кроме концентрированной hno 3 ). С фтором реагирует на холоду, а с хлором и бромом — выше 400 °С, давая соответственно caf 2 , cacl 2 и cabr 2. Эти галогениды в расплавленном состоянии образуют с ca так называемого субсоединения — caf, caci, в которых ca формально одновалентен. При нагревании ca c серой получается кальция сульфид cas, последний присоединяет серу, образуя полисульфиды (cas 2 , cas 4 и др.). Взаимодействуя с сухим водородом при 300—400 °c ca образует гидрид cah 2 — ионное соединение, в котором водород является анионом. При 500 °c ca и азот дают нитрид ca 3 n 2 ; взаимодействие ca с аммиаком на холоду приводит к комплексному аммиакату ca [nh 3 ] 6 . При нагревании без доступа воздуха с графитом, кремнием или фосфором ca дает соответственно карбид кальция cac 2 , силициды casi 2 и фосфид ca 3 p 2 . ca образует интерметаллические соединения с al, ag, au, cu, li, mg, pb, sn и др.

Получение и применение. В промышленности ca получают двумя способами: 1) нагреванием брикетированной смеси cao и порошка al при 1200 °С в вакууме 0,01—0,02 мм рт. ст .; выделяющиеся по реакции: 6cao +2al = 3 СаО ? l 2 o 3 + 3Са пары ca конденсируются на холодной поверхности; 2) электролизом расплава cacl 2 и kcl с жидким медно-кальциевым катодом приготовляют сплав cu — ca (65% ca), из которого ca отгоняют при температуре 950—1000 °С в вакууме 0,1—0,001 мм рт. ст .

В виде чистого металла ca применяют как восстановитель u, th, cr, v, zr, cs, rb и некоторых редкоземельных металлов из их соединений. Его используют также для раскисления сталей, бронз и др. сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Большое применение в технике получили антифрикционные материалы системы pb—na—ca, а также сплавы pb—ca, служащие для изготовления оболочки электрических кабелей. Сплав ca—si—ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей. О применении соединений К. см. в соответствующих статьях.

А. Я. Фишер, А. И. Перельман.

Кальций в организме. ca — один из биогенных элементов , необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой ca у некоторых организмов содержание ca достигает 38%; у человека — 1,4—2%. Клетки растительных и животных организмов нуждаются в строго определённых соотношениях ионов ca 2+ , na + и К + во внеклеточных средах. Растения получают ca из почвы. По их отношению к ca растения делят на кальцефилов и кальцефобов . Животные получают ca с пищей и водой. ca необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и др. животных, активации ряда ферментов. Ионы ca 2+ передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в её свертывании. В клетках почти весь ca находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганическими фосфатами и органическими кислотами. В плазме крови человека и высших животных только 20—40% ca может быть связано с белками. У животных, обладающих скелетом, до 97—99% всего ca используется в качестве строительного материала: у беспозвоночных в основном в виде caco 3 (раковины моллюсков, кораллы), у позвоночных — в виде фосфатов. Многие беспозвоночные запасают ca перед линькой для построения нового скелета или для обеспечения жизненных функции в неблагоприятных условиях.

Содержание ca в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желёз. Важнейшую роль в этих процессах играет витамин d. Всасывание ca происходит в переднем отделе тонкого кишечника. Усвоение ca ухудшается при снижении кислотности в кишечнике и зависит от соотношения ca, Р и жира в пище. Оптимальные соотношения ca/p в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище Р или щавелевой кислоты всасывание ca ухудшается, Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са/жир в пище человека 0,04—0,08 г ca на 1 г жира. Выделение ca происходит главным образом через кишечник. Млекопитающие в период лактации теряют много ca с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит , у взрослых животных — изменение состава и строения скелета ( остеомаляция ).

И. А. Скульский.

В медицине применение препаратов ca устраняет нарушения, связанные с недостатком ионов ca 2+ в организме (при тетании, спазмофилии, рахите). Препараты ca снижают повышенную чувствительность к аллергенам и используются для лечения аллергических заболеваний (сывороточная болезнь, крапивница, ангионевротический отёк, сенная лихорадкаи др.). Препараты ca уменьшают повышенную проницаемость сосудов и оказывают противовоспалительное действие. Их применяют при геморрагическом васкулите, лучевой болезни, воспалительных и экссудативных процессах (пневмония, плеврит, эндометрит и др.) и некоторых кожных заболеваниях. Назначают как кровоостанавливающие средства, для улучшения деятельности сердечной мышцы и усиления действия препаратов наперстянки; как слабые мочегонные и как противоядия при отравлении солями магния. Вместе с др. средствами препараты ca применяют для стимулирования родовой деятельности. Хлористый кальций вводят через рот и внутривенно. Оссокальцинол (15%-ная стерильная суспензия особым образом приготовленного костного порошка в персиковом масле) предложен для тканевой терапии. К препаратам ca относится также гипс (caso 4 ), применяемый в хирургии для гипсовых повязок, и мел (СаСО 3 ), назначаемый внутрь при повышенной кислотности желудочного сока и для приготовления зубного порошка.

Лит.: Краткая химическая энциклопедия, т. 2, М., 1963, с. 370—75; Родякин В. В., Кальций, его соединения и сплавы, М., 1967; Капланский С. Я., Минеральный обмен, М. — Л.,1938; Вишняков С. И., Обмен макроэлементов у сельскохозяйственных животных, М., 1967.

Скачать реферат на тему: "Кальций"

Назад



(С) Дистанционный творческий конкурс-проект "Моя Веб-страница", 2005
(С) Хмелев Алексей, 2005
http://www.eidos.ru/project/all/web/index.htm