ИСТОРИЯ

ЗАЙМЕМСЯ
ХИМИЕЙ


Название: Бериллий (beryllium)
Порядковый номер: 4
Группа: ii
Период: 2
Электронное строение: 2s2
Атомная масса: 9,012182
Электроотрицательность: 1,57
Температура плавления: 1287?С
Температура кипения: 2472?С
Плотность (г/см3): 1,848
Характерные степени окисления: +2
Цвет элемента: Свинцово-серый
Кем открыт: Ф. Велер, А.А. Басси
Год открытия: 1798
Страна открытия: Германия/Франция
Кристалическая структура:
гексагональная

Бериллий (лат. beryllium), be, химический элемент ii группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122; лёгкий светло-серый металл. Имеет один стабильный изотоп 9 be. Открыт в 1798 в виде окиси beo, выделенной из минерала берилла Л. Вокленом . Металлический Б. впервые получили в 1828 Ф. Вёлер и А. Бюсси независимо друг от друга. Т. к. некоторые соли Б. сладкого вкуса, его вначале называли «глюциний» (от греч. glykys — сладкий) или «глиций». Название glicinium (знак gi) употребляется (наряду с Б.) только во Франции. Применение Б. началось в 40-х гг. 20 в., хотя его ценные свойства как компонента сплавов были обнаружены ещё ранее, а замечательные ядерные — в начале 30-х гг. 20 в.

Б. — редкий элемент, среднее содержание его в земной коре 6 10 -4 % по массе. Б. — типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Известно около 40 минералов Б. Из них наибольшее практическое значение имеет берилл, перспективны и частично используются фенакит, гельвин, хризоберилл, бертрандит.

Физические и химические свойства. Кристаллическая решётка Б. гексагональная плотноупакованная с периодами а = 2,855å и с= 3,5840å. Б. легче алюминия, его плотность 1847,7 кг/м 3 (у al около 2700 кг/м 3 ) , t лл 1284°c, t kип 2450°С.

Б. обладает наиболее высокой из всех металлов теплоёмкостью, 1,80 кдж/ ( кг . К ) или 0,43 ккал/ (кг • °С), высокой теплопроводностью, 178 вт/ ( м К ) или 0,45 кал/см сек • ° С ) при 50°С, низким электросопротивлением, 3,6—4,5 мком см при 20°С; коэффициент линейного расширения 10,3—131 (25—100°С). Эти свойства зависят от качества и структуры металла и заметно меняются с температурой. Модуль продольной упругости (модуль Юнга) 300Гн/м 2 (3 . 10 4 кгс/мм 2 ) . Механические свойства Б. зависят от чистоты металла, величины зерна и текстуры, определяемой характером обработки. Предел прочности Б. при растяжении 200—550 Мн/м 2 (20—55 кгс/мм 2 ) , удлинение 0,2—2%. Обработка давлением приводит к определённой ориентации кристаллов Б., возникает анизотропия, становится возможным значительное улучшение свойств. Предел прочности в направлении вытяжки доходит до 400— 800Мн/м 2 ( 40—80 кгс/мм 2 ) , предел текучести 250—600 Мн/м 2 (25—60 кгс/мм 2 ) , а относительное удлинение до 4—12%. Механические свойства в направлении, перпендикулярном вытяжке, почти не меняются. Б. — хрупкий металл; его ударная вязкость 10—50 кдж/м 2 (0,1— 0,5 кгс . м/см 2 ) . Температура перехода Б. из хрупкого состояния в пластическое 200— 400 °С.

В химических соединениях Б. 2-валентен (конфигурация внешних электронов 2s 2 ) . Б. обладает высокой химической активностью, но компактный металл устойчив на воздухе благодаря образованию тонкой и прочной плёнки окиси beo. При нагревании выше 800 °С быстро окисляется. С водой до 100°С Б. практически не взаимодействует. Легко растворяется в плавиковой, соляной, разбавленной серной кислотах, слабо реагирует с концентрированной серной и разбавленной азотной кислотами и не реагирует с концентрированной азотной. Растворяется в водных растворах щелочей, образуя соли бериллаты, например na 2 beo2. При комнатной температуре реагирует с фтором, а при повышенных — с др. галогенами и сероводородом. Взаимодействует с азотом при температуре выше 650 °С с образованием нитрида be 3 n 2 и при температуре выше 1200°С с углеродом, образуя карбид be 2 c. С водородом практически не реагирует во всём диапазоне температур. Гидрид Б. получен при разложении бериллийорганических соединений и устойчив до 240°С. При высоких температурах Б. взаимодействует с большинством металлов, образуя бериллиды ; с алюминием и кремнием даёт эвтектические сплавы. Растворимость примесных элементов в Б. чрезвычайно мала. Мелкодисперсный порошок Б. сгорает в парах серы, селена, теллура. Расплавленный Б. взаимодействует с большинством окислов, нитридов, сульфидов и карбидов. Единственно пригодным материалом тиглей для плавки Б. служит бериллия окись .

Гидроокись be (oh) 2 — слабое основание с амфотерными свойствами. Соли Б. сильно гигроскопичны и за небольшим исключением (фосфат, карбонат) хорошо растворимы в воде, их водные растворы вследствие гидролиза имеют кислую реакцию. Фторид bef 2 с фторидами щелочных металлов и аммония образует фторбериллаты, например na 2 bef 4 , имеющие большое промышленное значение. Известен ряд сложных бериллийорганических соединений, гидролиз и окисление некоторых из них протекают со взрывом.

Получение и применение. В промышленности металлический Б. и его соединения получают переработкой берилла в гидроокись be (oh) 2 или сульфат bes0 4 . По одному из способов, измельченный берилл спекают с na 2 sif 6 , образующиеся фторбериллаты натрия na 2 bef 4 и nabef 3 выщелачивают из смеси водой; при добавлении к этому раствору naoh в осадок выпадает be (oh) 2 . По другому способу, берилл спекают с известью или мелом, спек обрабатывают серной кислотой; образующийся bes0 4 выщелачивают водой и осаждают аммиаком be (oh) 2 . Более полная очистка достигается многократной кристаллизацией beso 4 , из которого прокаливанием получают beo. Известно также вскрытие берилла хлорированием или действием фосгена. Дальнейшая обработка ведётся с целью получения bef 2 или becl 2 .

Металлический Б. получают восстановлением bef 2 магнием при 900—1300°С или электролизом becl 2 в смеси с naci при 350°С.

Полученный металл переплавляют в вакууме. Металл высокой чистоты получают дистилляцией в вакууме, а в небольших количествах — зонной плавкой; применяют также электролитическое рафинирование.

Из-за трудностей получения качественных отливок заготовки для изделий из Б. готовят методами порошковой металлургии . Б. измельчают в порошок и подвергают горячему прессованию в вакууме при 1140—1180°С. Прутки, трубы и др. профили получают выдавливанием при 800—1050°С (горячее выдавливание) или при 400—500 °С (тёплое выдавливание). Листы из Б. получают прокаткой горячепрессованных заготовок или выдавленных полос при 760—840°С. Применяют и др. виды обработки — ковку, штамповку, волочение. При механической обработке Б. пользуются твердосплавным инструментом.

Сочетание малой атомной массы, малого сечения захвата тепловых нейтронов (0,009 барн на атом) и удовлетворительной стойкости в условиях радиации делает Б. одним из лучших материалов для изготовления замедлителей и отражателей нейтронов в атомных реакторах. В Б. выгодно сочетаются малая плотность, высокий модуль упругости, прочность, теплопроводность. По удельной прочности Б. превосходит все металлы. Благодаря этому в конце 50 — начале 60-х гг. Б. стали применять в авиационной, ракетной и космической технике и гироприборостроении. Однако высокая хрупкость Б. при комнатной температуре — главное препятствие к его широкому использованию как конструкционного материала.

Б. входит в состав сплавов на основе al, mg, cu и др. цветных металлов (см. Алюминиевые сплавы , Магниевые сплавы , Медные сплавы ) .

Некоторые бериллиды тугоплавких металлов рассматриваются как перспективные конструкционные материалы в авиа- и ракетостроении. Б. применяется также для поверхностной бериллизации стали. Из Б. изготовляют окна рентгеновских трубок, используя его высокую проницаемость для рентгеновских лучей (в 17 раз большую, чем у алюминия). Б. применяется в нейтронных источниках на основе радия, полония, актиния, плутония, т.к. он обладает свойством интенсивного излучения нейтронов при бомбардировке a -частицами. Б. и некоторые его соединения рассматриваются как перспективное твёрдое ракетное топливо с наиболее высокими удельными импульсами.

Широкое производство чистого Б. началось после 2-й мировой войны. Переработка Б. осложняется высокой токсичностью летучих соединений и пыли, содержащей Б., поэтому при работе с Б. и его соединениями нужны специальные меры защиты.

Бериллий в организме. Б. присутствует в тканях многих растений и животных. Содержание Б. в почвах колеблется от 2•10 -4 до 1•10 -3 %; в золе растений около 2•10 -4 %. У животных Б. распределяется во всех органах и тканях; в золе костей содержится от 5 . 10 -4 до 7 . 10 -3 % Б. Около 50% усвоенного животным Б. выделяется с мочой, около 30% поглощается костями, 8% обнаружено в печени и почках. Биологическое значение Б. мало выяснено; оно определяется участием Б. в обмене mg и Р в костной ткани. При избытке в рационе Б., по-видимому, происходит связывание в кишечнике ионов фосфорной кислоты в неусвояемый фосфат Б. Активность некоторых ферментов (щелочной фосфатазы, аденозинтрифосфатазы) тормозится малыми концентрациями Б. Под влиянием Б. при недостатке фосфора развивается не излечиваемый витамином d бериллиевый рахит, встречаемый у животных в биогеохимических провинциях , богатых Б.

Лит.: Бериллий, под ред. Д. Уайта, Дж. Бёрка, пер. с англ., М., 1960; Дарвин Дж., Баддери Дж., Бериллий, пер. с англ., М., 1962; Силина Г. Ф., Зарембо Ю. И., Бертина Л. Э., Бериллий, химическая технология и металлургия, М., 1960; Папиров И. И., Тихинский Г. Ф., Физическое металловедение бериллия, М., 1968; Эверест Д., Химия бериллия, пер. с англ., М., 1968; Химия и технология редких и рассеянных элементов, т. 2, М., 1969; Самсонов Г. В., Химия бериллидов, «Успехи химии», 1966, т. 35, в. 5, с. 779; Гагарин В. В., Бериллий как конструкционный материал атомной энергетики, «Атомная техника за рубежом», 1969, №3, с.9; Ижванов Л. А. [и др.], Бериллий — новый конструкционный металл, «Металловедение и термическая обработка металлов», 1969, №2, с. 24; Коган Б. И., Капустинская К. А., Бериллий в современной технике, «Цветные металлы», 1967, № 7, с. 105.

Б. М. Булычев, Л. А. Ижванов, В. В. Ковальский.

Скачать реферат по теме: "Бериллий"

Назад



(С) Дистанционный творческий конкурс-проект "Моя Веб-страница", 2005
(С) Хмелев Алексей, 2005
http://www.eidos.ru/project/all/web/index.htm