ИСТОРИЯ

ЗАЙМЕМСЯ
ХИМИЕЙ


Название: Бор (borum)
Порядковый номер: 5
Группа: iii
Период: 2
Атомная масса: 10,811
Электроотрицательность: 2,04
Температура плавления: 2079?С
Температура кипения: 4000?С
Плотность (г/см3): 2,34
Характерные степени окисления: +3
Цвет: Чёрный
Кем открыт: Г. Дэви, Ж. Гей-Люссак, Л. Тенар
Год открытия: 1808
Страна открытия: Англия/Франция
Кристалическая структура:
ромбоэдрическая

Бор (лат. borum), В, химический элемент iii группы периодической системы Менделеева, атомный номер 5, атомная масса 10,811; кристаллы серовато-чёрного цвета (очень чистый Б. бесцветен). Природный Б. состоит из двух стабильных изотопов: 10 b (19%) и 11 b (81%). Ранее других известное соединение Б. — бура — упоминается в сочинениях алхимиков под арабским названием «бурак» и латинским borax, откуда и произошло наименование «бор». Свободный Б. (нечистый) впервые получили французские химики Ж. Гей-Люссак и Л. Тенар в 1808 нагреванием борного ангидрида b 2 o 3 с металлическим калием. Общее содержание Б. в земной коре 3•10 -4 % по массе. В природе Б. в свободном состоянии не обнаружен. Многие соединения Б. широко распространены, особенно в небольших концентрациях. В виде боросиликатов, боратов, бороалюмосиликатов, а также как изоморфная примесь в других минералах Б. входит в состав многих изверженных и осадочных пород. Соединения Б. найдены в нефтяных водах, морской воде, соляных озёрах, горячих источниках, в вулканических и сопочных грязях, во многих почвах. О главных природных соединениях Б., служащих для его промышленного получения.

Физические и химические свойства. Известно несколько кристаллических модификаций Б. Для двух из них рентгеноструктурным анализом удалось полностью определить кристаллическую структуру, которая в обоих случаях оказалась весьма сложной. Атомы Б. образуют в этих структурах трёхмерный каркас подобно атомам углерода в алмазе. Этим объясняется высокая твёрдость Б. Однако строение каркаса в структурах Б. гораздо сложнее, чем в алмазе. Основной структурной единицей в кристаллах Б. служат двадцатигранники (икосаэдры), в вершинах каждого из которых находятся 12 атомов Б. Икосаэдры соединяются между собой как непосредственно, так и посредством промежуточных атомов Б., не входящих в состав какого-либо икосаэдра. При таком строении оказывается, что атомы Б. в кристаллах имеют разные координационные числа: 4, 5, 6 и 5 + 2 (5 ближних «соседей» и 2 более далёких). Т. к. на внешней оболочке атома Б. находятся всего 3 электрона (электронная конфигурация 2s 2 2p), на каждую присутствующую в кристаллическом Б. связь приходится существенно меньше двух электронов. В соответствии с современными представлениями, в кристаллах Б. осуществляется особый тип ковалентной связи — многоцентровая связь с дефицитом электронов. В соединениях ионного типа Б. 3-валентен. Так называемый «аморфный» Б., получаемый при восстановлении b 2 o 3 металлическим натрием или калием, имеет плотность 1,73 г/см 3 . Чистый кристаллический Б. имеет плотность 2,3 г/см 3 , температуру плавления 2075 °С, температуру кипения 3860 °С; твёрдость Б. по минералогической шкале 9, микротвёрдость 34 Гн/м 2 (3400 кгс/мм 2 ) . Кристаллический Б. — полупроводник. В обычных условиях он проводит электрический ток плохо. При нагревании до 800°С электрическая проводимость Б. увеличивается на несколько порядков, причём знак проводимости меняется (электронная — при низких температурах, дырочная — при высоких).

Химически Б. при обычных условиях довольно инертен (взаимодействует активно лишь с фтором), причём кристаллический Б. менее активен, чем аморфный. С повышением температуры активность Б. возрастает и он соединяется с кислородом, серой, галогенами. При нагревании на воздухе до 700 °С Б. горит красноватым пламенем, образуя борный ангидрид b 2 o 3 — бесцветную стекловидную массу. При нагревании выше 900 °С Б. с азотом образует бора нитрид bn, при нагревании с углём — бора карбид b 4 c, с металлами — бориды . С водородом Б. заметно не реагирует; его гидриды ( бороводороды ) получают косвенным путём. При температуре красного каления Б. взаимодействует с водяным паром: 2b + 3Н 2 О = b 2 o 3 + 3h 2 . В кислотах Б. при обычной температуре не растворяется, кроме концентрированной азотной кислоты, которая окисляет его до борной кислоты h 3 bo 3 . Медленно растворяется в концентрированных растворах щелочей с образованием боратов.

Важные комплексные соединения Б. — борогидриды , например na [bh 4 ], и фтороборная, или борофтористоводородная, кислота h [bf 4 ], образующаяся из bf 3 и hf; большинство солей этой кислоты (фтороборатов) растворимы в воде (за исключением солей К, rb, cs). Общая особенность самого Б. и его соединений — их сходство с кремнием и его соединениями. Так, борная кислота, подобно кремниевой, обладает слабыми кислотными свойствами и растворяется в hf с образованием газообразного bf 3 (кремниевая даёт sif 4 ). Бороводороды напоминают кремневодороды, а карбид Б. — карбид кремния, и т.д. Представляет интерес особое сходство модификаций нитрида bn с графитом или алмазом. Это связано с тем, что атомы В и n по электронной конфигурации совместно имитируют 2 атома С (у В — 3 валентных электрона, у n — 5, у двух атомов С — по 4). Эта аналогия характерна и для других соединений, содержащих одновременно Б. и азот. Так, боразан bh 3 —nh 3 подобен этану СН 3 —СН 3 , а боразен bh 2 =nh 2 и простейший боразин bh ? nh подобны соответственно этилену СН 2 =СН 2 и ацетилену ch ? ch. Если тримеризация ацетилена c 2 h 2 даёт бензол c 6 h 6 , то аналогичный процесс приводит от боразина bhnh к боразолу b 3 n 3 h 6.

Получение и применение. Элементарный Б. из природного сырья получают в несколько стадий. Разложением боратов горячей водой или серной кислотой (в зависимости от их растворимости) получают борную кислоту, а её обезвоживанием — борный ангидрид. Восстановление В 2 О 3 металлическим магнием даёт Б. в виде темно-бурого порошка; от примесей его очищают обработкой азотной и плавиковой кислотами. Очень чистый Б., необходимый в производстве полупроводников, получают из его галогенидов: восстанавливают bcl 3 водородом при 1200°С или разлагают пары bbr 3 на танталовой проволоке, раскалённой до 1500°С. Чистый Б. получают также термическим разложением бороводородов.

Б. в небольших количествах (доли %) вводят в сталь и некоторые сплавы для улучшения их механических свойств; уже присадка к стали 0,001—0,003% Б. повышает её прочность (обычно в сталь вводят Б. в виде ферробора , т. е. сплава железа с 10—20% Б.). Поверхностное насыщение стальных деталей бором (до глубины 0,1—0,5 мм ) улучшает не только механические свойства, но и стойкость стали против коррозии. Благодаря способности изотопа 10 В поглощать тепловые нейтроны, его применяют для изготовления регулирующих стержней ядерных реакторов , служащих для прекращения или замедления реакции деления. Б. в виде газообразного bf 3 используют в счётчиках нейтронов. (При взаимодействии ядер 10 В с нейтронами образуются заряженные a -частицы, которые легко регистрировать; число же a -частиц равно числу нейтронов, поступивших в счётчик: 10 5 b + 1 0 n = 7 3 li + 4 2 a ). Сам Б. и его соединения — нитрид bn, карбид b 4 c, фосфид ВР и др. — применяют как диэлектрики и полупроводниковые материалы. Обширное применение находят борная кислота и её соли (прежде всего бура), бориды и др. bf 3 — катализатор некоторых органических реакций.

Лит.: Некрасов Б. В., Основы общей химии, т. 2, М., 1967; Щукарев С. А., Лекции по курсу общей химии, т. 2, Л., 1964; Бор, его соединения и сплавы, К., 1960.

В. Л. Василевский.

Б. в организме. Б. относится к числу химических элементов, которые в очень малых количествах содержатся в тканях растений и животных (тысячные и десятитысячные доли % на сухую массу). Б. необходим для поддержания нормальной жизнедеятельности растений. Важнейший симптом недостатка Б. — отмирание точки роста главного стебля, а затем и пазушных почек. Одновременно черешки и листья становятся хрупкими, цветки не появляются или не образуются плоды; поэтому при недостатке Б. падает урожай семян. Известны многие болезни, связанные с недостатком Б., например гниль сердечка сахарной свёклы, чёрная пятнистость столовой свёклы, побурение сердцевины брюквы и цветной капусты, засыхание верхушки льна, желтуха верхушки люцерны, бурая пятнистость абрикосов, опробковение яблок. При недостатке Б. замедляется окисление сахаров, аминирование продуктов углеводного обмена, синтез клеточных белков; однако ферменты, для которых Б. является необходимым элементом, пока неизвестны. По данным М. Я. Школьника, при недостатке Б. у растений снижается содержание аденозинтрифосфорной кислоты, а также нарушается процесс окислительного фосфорилирования , вследствие чего энергия, выделяющаяся при дыхании, не может быть использована для синтеза необходимых веществ. При недостатке Б. в почве в неё вносят борные удобрения. В биогеохимических провинциях с избытком Б. в почве (например, в Северо-Западном Казахстане) возникают морфологические изменения и заболевания растений, вызываемые накоплением Б., — гигантизм, карликовость, нарушение точек роста и др. На почвах с интенсивным борным засолением встречаются участки, лишённые растительности, «плешины», — один из поисковых признаков месторождения Б. Значение Б. в организме животных пока не выяснено. У человека и животных (овец, верблюдов) при питании растениями с избыточным содержанием Б. (60—600 мг/кг сухого вещества и более) нарушается обмен веществ (в частности, активность протеолитических ферментов) и появляется эндемическое заболевание желудочно-кишечного тракта — борный энтерит.

Лит.: Скок Дж., функция бора в растительной клетке, в кн.: Микроэлементы, пер. с англ., М., 1962; Ковальский В. В., Ананичев А. В., Шахова И. К., Борная биогеохимическая провинция Северо-Западного Казахстана, «Агрохимия», 1965, № 11.

В. В. Ковальский.

Скачать реферат по теме: "Бор"

Назад



(С) Дистанционный творческий конкурс-проект "Моя Веб-страница", 2005
(С) Хмелев Алексей, 2005
http://www.eidos.ru/project/all/web/index.htm